Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tracking Semantic Change in Slovene: A Novel Dataset and Optimal Transport-Based Distance (2402.16596v2)

Published 26 Feb 2024 in cs.CL

Abstract: In this paper, we focus on the detection of semantic changes in Slovene, a less resourced Slavic language with two million speakers. Detecting and tracking semantic changes provides insight into the evolution of language caused by changes in society and culture. We present the first Slovene dataset for evaluating semantic change detection systems, which contains aggregated semantic change scores for 104 target words obtained from more than 3,000 manually annotated sentence pairs. We analyze an important class of measures of semantic change metrics based on the Average pairwise distance and identify several limitations. To address these limitations, we propose a novel metric based on regularized optimal transport, which offers a more robust framework for quantifying semantic change. We provide a comprehensive evaluation of various existing semantic change detection methods and associated semantic change measures on our dataset. Through empirical testing, we demonstrate that our proposed approach, leveraging regularized optimal transport, achieves either matching or improved performance compared to baseline approaches.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (62)
  1. Gillani, N., Levy, R.: Simple dynamic word embeddings for mapping perceptions in the public sphere. In: Proceedings of the Third Workshop on Natural Language Processing and Computational Social Science, pp. 94–99 (2019) Rosin et al. [2022] Rosin, G.D., Guy, I., Radinsky, K.: Time masking for temporal language models. In: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pp. 833–841 (2022) Tahmasebi et al. [2018] Tahmasebi, N., Borin, L., Jatowt, A.: Survey of computational approaches to diachronic conceptual change. arXiv preprint arXiv:1811.06278 (2018) Schlechtweg et al. [2020] Schlechtweg, D., McGillivray, B., Hengchen, S., Dubossarsky, H., Tahmasebi, N.: SemEval-2020 task 1: Unsupervised lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 1–23. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.1 Kutuzov et al. [2021] Kutuzov, A., Pivovarova, L., et al.: RuShiftEval: a shared task on semantic shift detection for russian. In: Computational Linguistics and Intellectual Technologies: Papers from the Annual Conference Dialogue. (2021). Redkollegija sbornika Basile et al. [2020] Basile, P., Caputo, A., Caselli, T., Cassotti, P., Varvara, R.: Diacr-ita @ evalita2020: Overview of the evalita2020 diachronic lexical semantics (diacr-ita) task. EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020 (2020) Zamora-Reina et al. [2022] Zamora-Reina, F.D., Bravo-Marquez, F., Schlechtweg, D.: LSCDiscovery: A shared task on semantic change discovery and detection in Spanish. In: Tahmasebi, N., Montariol, S., Kutuzov, A., Hengchen, S., Dubossarsky, H., Borin, L. (eds.) Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pp. 149–164. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.lchange-1.16 . https://aclanthology.org/2022.lchange-1.16 Marra et al. [2022] Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Rosin, G.D., Guy, I., Radinsky, K.: Time masking for temporal language models. In: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pp. 833–841 (2022) Tahmasebi et al. [2018] Tahmasebi, N., Borin, L., Jatowt, A.: Survey of computational approaches to diachronic conceptual change. arXiv preprint arXiv:1811.06278 (2018) Schlechtweg et al. [2020] Schlechtweg, D., McGillivray, B., Hengchen, S., Dubossarsky, H., Tahmasebi, N.: SemEval-2020 task 1: Unsupervised lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 1–23. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.1 Kutuzov et al. [2021] Kutuzov, A., Pivovarova, L., et al.: RuShiftEval: a shared task on semantic shift detection for russian. In: Computational Linguistics and Intellectual Technologies: Papers from the Annual Conference Dialogue. (2021). Redkollegija sbornika Basile et al. [2020] Basile, P., Caputo, A., Caselli, T., Cassotti, P., Varvara, R.: Diacr-ita @ evalita2020: Overview of the evalita2020 diachronic lexical semantics (diacr-ita) task. EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020 (2020) Zamora-Reina et al. [2022] Zamora-Reina, F.D., Bravo-Marquez, F., Schlechtweg, D.: LSCDiscovery: A shared task on semantic change discovery and detection in Spanish. In: Tahmasebi, N., Montariol, S., Kutuzov, A., Hengchen, S., Dubossarsky, H., Borin, L. (eds.) Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pp. 149–164. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.lchange-1.16 . https://aclanthology.org/2022.lchange-1.16 Marra et al. [2022] Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tahmasebi, N., Borin, L., Jatowt, A.: Survey of computational approaches to diachronic conceptual change. arXiv preprint arXiv:1811.06278 (2018) Schlechtweg et al. [2020] Schlechtweg, D., McGillivray, B., Hengchen, S., Dubossarsky, H., Tahmasebi, N.: SemEval-2020 task 1: Unsupervised lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 1–23. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.1 Kutuzov et al. [2021] Kutuzov, A., Pivovarova, L., et al.: RuShiftEval: a shared task on semantic shift detection for russian. In: Computational Linguistics and Intellectual Technologies: Papers from the Annual Conference Dialogue. (2021). Redkollegija sbornika Basile et al. [2020] Basile, P., Caputo, A., Caselli, T., Cassotti, P., Varvara, R.: Diacr-ita @ evalita2020: Overview of the evalita2020 diachronic lexical semantics (diacr-ita) task. EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020 (2020) Zamora-Reina et al. [2022] Zamora-Reina, F.D., Bravo-Marquez, F., Schlechtweg, D.: LSCDiscovery: A shared task on semantic change discovery and detection in Spanish. In: Tahmasebi, N., Montariol, S., Kutuzov, A., Hengchen, S., Dubossarsky, H., Borin, L. (eds.) Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pp. 149–164. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.lchange-1.16 . https://aclanthology.org/2022.lchange-1.16 Marra et al. [2022] Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., McGillivray, B., Hengchen, S., Dubossarsky, H., Tahmasebi, N.: SemEval-2020 task 1: Unsupervised lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 1–23. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.1 Kutuzov et al. [2021] Kutuzov, A., Pivovarova, L., et al.: RuShiftEval: a shared task on semantic shift detection for russian. In: Computational Linguistics and Intellectual Technologies: Papers from the Annual Conference Dialogue. (2021). Redkollegija sbornika Basile et al. [2020] Basile, P., Caputo, A., Caselli, T., Cassotti, P., Varvara, R.: Diacr-ita @ evalita2020: Overview of the evalita2020 diachronic lexical semantics (diacr-ita) task. EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020 (2020) Zamora-Reina et al. [2022] Zamora-Reina, F.D., Bravo-Marquez, F., Schlechtweg, D.: LSCDiscovery: A shared task on semantic change discovery and detection in Spanish. In: Tahmasebi, N., Montariol, S., Kutuzov, A., Hengchen, S., Dubossarsky, H., Borin, L. (eds.) Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pp. 149–164. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.lchange-1.16 . https://aclanthology.org/2022.lchange-1.16 Marra et al. [2022] Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Pivovarova, L., et al.: RuShiftEval: a shared task on semantic shift detection for russian. In: Computational Linguistics and Intellectual Technologies: Papers from the Annual Conference Dialogue. (2021). Redkollegija sbornika Basile et al. [2020] Basile, P., Caputo, A., Caselli, T., Cassotti, P., Varvara, R.: Diacr-ita @ evalita2020: Overview of the evalita2020 diachronic lexical semantics (diacr-ita) task. EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020 (2020) Zamora-Reina et al. [2022] Zamora-Reina, F.D., Bravo-Marquez, F., Schlechtweg, D.: LSCDiscovery: A shared task on semantic change discovery and detection in Spanish. In: Tahmasebi, N., Montariol, S., Kutuzov, A., Hengchen, S., Dubossarsky, H., Borin, L. (eds.) Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pp. 149–164. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.lchange-1.16 . https://aclanthology.org/2022.lchange-1.16 Marra et al. [2022] Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Basile, P., Caputo, A., Caselli, T., Cassotti, P., Varvara, R.: Diacr-ita @ evalita2020: Overview of the evalita2020 diachronic lexical semantics (diacr-ita) task. EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020 (2020) Zamora-Reina et al. [2022] Zamora-Reina, F.D., Bravo-Marquez, F., Schlechtweg, D.: LSCDiscovery: A shared task on semantic change discovery and detection in Spanish. In: Tahmasebi, N., Montariol, S., Kutuzov, A., Hengchen, S., Dubossarsky, H., Borin, L. (eds.) Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pp. 149–164. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.lchange-1.16 . https://aclanthology.org/2022.lchange-1.16 Marra et al. [2022] Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zamora-Reina, F.D., Bravo-Marquez, F., Schlechtweg, D.: LSCDiscovery: A shared task on semantic change discovery and detection in Spanish. In: Tahmasebi, N., Montariol, S., Kutuzov, A., Hengchen, S., Dubossarsky, H., Borin, L. (eds.) Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pp. 149–164. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.lchange-1.16 . https://aclanthology.org/2022.lchange-1.16 Marra et al. [2022] Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  2. Rosin, G.D., Guy, I., Radinsky, K.: Time masking for temporal language models. In: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pp. 833–841 (2022) Tahmasebi et al. [2018] Tahmasebi, N., Borin, L., Jatowt, A.: Survey of computational approaches to diachronic conceptual change. arXiv preprint arXiv:1811.06278 (2018) Schlechtweg et al. [2020] Schlechtweg, D., McGillivray, B., Hengchen, S., Dubossarsky, H., Tahmasebi, N.: SemEval-2020 task 1: Unsupervised lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 1–23. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.1 Kutuzov et al. [2021] Kutuzov, A., Pivovarova, L., et al.: RuShiftEval: a shared task on semantic shift detection for russian. In: Computational Linguistics and Intellectual Technologies: Papers from the Annual Conference Dialogue. (2021). Redkollegija sbornika Basile et al. [2020] Basile, P., Caputo, A., Caselli, T., Cassotti, P., Varvara, R.: Diacr-ita @ evalita2020: Overview of the evalita2020 diachronic lexical semantics (diacr-ita) task. EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020 (2020) Zamora-Reina et al. [2022] Zamora-Reina, F.D., Bravo-Marquez, F., Schlechtweg, D.: LSCDiscovery: A shared task on semantic change discovery and detection in Spanish. In: Tahmasebi, N., Montariol, S., Kutuzov, A., Hengchen, S., Dubossarsky, H., Borin, L. (eds.) Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pp. 149–164. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.lchange-1.16 . https://aclanthology.org/2022.lchange-1.16 Marra et al. [2022] Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tahmasebi, N., Borin, L., Jatowt, A.: Survey of computational approaches to diachronic conceptual change. arXiv preprint arXiv:1811.06278 (2018) Schlechtweg et al. [2020] Schlechtweg, D., McGillivray, B., Hengchen, S., Dubossarsky, H., Tahmasebi, N.: SemEval-2020 task 1: Unsupervised lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 1–23. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.1 Kutuzov et al. [2021] Kutuzov, A., Pivovarova, L., et al.: RuShiftEval: a shared task on semantic shift detection for russian. In: Computational Linguistics and Intellectual Technologies: Papers from the Annual Conference Dialogue. (2021). Redkollegija sbornika Basile et al. [2020] Basile, P., Caputo, A., Caselli, T., Cassotti, P., Varvara, R.: Diacr-ita @ evalita2020: Overview of the evalita2020 diachronic lexical semantics (diacr-ita) task. EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020 (2020) Zamora-Reina et al. [2022] Zamora-Reina, F.D., Bravo-Marquez, F., Schlechtweg, D.: LSCDiscovery: A shared task on semantic change discovery and detection in Spanish. In: Tahmasebi, N., Montariol, S., Kutuzov, A., Hengchen, S., Dubossarsky, H., Borin, L. (eds.) Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pp. 149–164. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.lchange-1.16 . https://aclanthology.org/2022.lchange-1.16 Marra et al. [2022] Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., McGillivray, B., Hengchen, S., Dubossarsky, H., Tahmasebi, N.: SemEval-2020 task 1: Unsupervised lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 1–23. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.1 Kutuzov et al. [2021] Kutuzov, A., Pivovarova, L., et al.: RuShiftEval: a shared task on semantic shift detection for russian. In: Computational Linguistics and Intellectual Technologies: Papers from the Annual Conference Dialogue. (2021). Redkollegija sbornika Basile et al. [2020] Basile, P., Caputo, A., Caselli, T., Cassotti, P., Varvara, R.: Diacr-ita @ evalita2020: Overview of the evalita2020 diachronic lexical semantics (diacr-ita) task. EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020 (2020) Zamora-Reina et al. [2022] Zamora-Reina, F.D., Bravo-Marquez, F., Schlechtweg, D.: LSCDiscovery: A shared task on semantic change discovery and detection in Spanish. In: Tahmasebi, N., Montariol, S., Kutuzov, A., Hengchen, S., Dubossarsky, H., Borin, L. (eds.) Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pp. 149–164. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.lchange-1.16 . https://aclanthology.org/2022.lchange-1.16 Marra et al. [2022] Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Pivovarova, L., et al.: RuShiftEval: a shared task on semantic shift detection for russian. In: Computational Linguistics and Intellectual Technologies: Papers from the Annual Conference Dialogue. (2021). Redkollegija sbornika Basile et al. [2020] Basile, P., Caputo, A., Caselli, T., Cassotti, P., Varvara, R.: Diacr-ita @ evalita2020: Overview of the evalita2020 diachronic lexical semantics (diacr-ita) task. EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020 (2020) Zamora-Reina et al. [2022] Zamora-Reina, F.D., Bravo-Marquez, F., Schlechtweg, D.: LSCDiscovery: A shared task on semantic change discovery and detection in Spanish. In: Tahmasebi, N., Montariol, S., Kutuzov, A., Hengchen, S., Dubossarsky, H., Borin, L. (eds.) Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pp. 149–164. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.lchange-1.16 . https://aclanthology.org/2022.lchange-1.16 Marra et al. [2022] Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Basile, P., Caputo, A., Caselli, T., Cassotti, P., Varvara, R.: Diacr-ita @ evalita2020: Overview of the evalita2020 diachronic lexical semantics (diacr-ita) task. EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020 (2020) Zamora-Reina et al. [2022] Zamora-Reina, F.D., Bravo-Marquez, F., Schlechtweg, D.: LSCDiscovery: A shared task on semantic change discovery and detection in Spanish. In: Tahmasebi, N., Montariol, S., Kutuzov, A., Hengchen, S., Dubossarsky, H., Borin, L. (eds.) Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pp. 149–164. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.lchange-1.16 . https://aclanthology.org/2022.lchange-1.16 Marra et al. [2022] Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zamora-Reina, F.D., Bravo-Marquez, F., Schlechtweg, D.: LSCDiscovery: A shared task on semantic change discovery and detection in Spanish. In: Tahmasebi, N., Montariol, S., Kutuzov, A., Hengchen, S., Dubossarsky, H., Borin, L. (eds.) Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pp. 149–164. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.lchange-1.16 . https://aclanthology.org/2022.lchange-1.16 Marra et al. [2022] Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  3. Tahmasebi, N., Borin, L., Jatowt, A.: Survey of computational approaches to diachronic conceptual change. arXiv preprint arXiv:1811.06278 (2018) Schlechtweg et al. [2020] Schlechtweg, D., McGillivray, B., Hengchen, S., Dubossarsky, H., Tahmasebi, N.: SemEval-2020 task 1: Unsupervised lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 1–23. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.1 Kutuzov et al. [2021] Kutuzov, A., Pivovarova, L., et al.: RuShiftEval: a shared task on semantic shift detection for russian. In: Computational Linguistics and Intellectual Technologies: Papers from the Annual Conference Dialogue. (2021). Redkollegija sbornika Basile et al. [2020] Basile, P., Caputo, A., Caselli, T., Cassotti, P., Varvara, R.: Diacr-ita @ evalita2020: Overview of the evalita2020 diachronic lexical semantics (diacr-ita) task. EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020 (2020) Zamora-Reina et al. [2022] Zamora-Reina, F.D., Bravo-Marquez, F., Schlechtweg, D.: LSCDiscovery: A shared task on semantic change discovery and detection in Spanish. In: Tahmasebi, N., Montariol, S., Kutuzov, A., Hengchen, S., Dubossarsky, H., Borin, L. (eds.) Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pp. 149–164. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.lchange-1.16 . https://aclanthology.org/2022.lchange-1.16 Marra et al. [2022] Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., McGillivray, B., Hengchen, S., Dubossarsky, H., Tahmasebi, N.: SemEval-2020 task 1: Unsupervised lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 1–23. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.1 Kutuzov et al. [2021] Kutuzov, A., Pivovarova, L., et al.: RuShiftEval: a shared task on semantic shift detection for russian. In: Computational Linguistics and Intellectual Technologies: Papers from the Annual Conference Dialogue. (2021). Redkollegija sbornika Basile et al. [2020] Basile, P., Caputo, A., Caselli, T., Cassotti, P., Varvara, R.: Diacr-ita @ evalita2020: Overview of the evalita2020 diachronic lexical semantics (diacr-ita) task. EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020 (2020) Zamora-Reina et al. [2022] Zamora-Reina, F.D., Bravo-Marquez, F., Schlechtweg, D.: LSCDiscovery: A shared task on semantic change discovery and detection in Spanish. In: Tahmasebi, N., Montariol, S., Kutuzov, A., Hengchen, S., Dubossarsky, H., Borin, L. (eds.) Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pp. 149–164. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.lchange-1.16 . https://aclanthology.org/2022.lchange-1.16 Marra et al. [2022] Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Pivovarova, L., et al.: RuShiftEval: a shared task on semantic shift detection for russian. In: Computational Linguistics and Intellectual Technologies: Papers from the Annual Conference Dialogue. (2021). Redkollegija sbornika Basile et al. [2020] Basile, P., Caputo, A., Caselli, T., Cassotti, P., Varvara, R.: Diacr-ita @ evalita2020: Overview of the evalita2020 diachronic lexical semantics (diacr-ita) task. EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020 (2020) Zamora-Reina et al. [2022] Zamora-Reina, F.D., Bravo-Marquez, F., Schlechtweg, D.: LSCDiscovery: A shared task on semantic change discovery and detection in Spanish. In: Tahmasebi, N., Montariol, S., Kutuzov, A., Hengchen, S., Dubossarsky, H., Borin, L. (eds.) Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pp. 149–164. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.lchange-1.16 . https://aclanthology.org/2022.lchange-1.16 Marra et al. [2022] Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Basile, P., Caputo, A., Caselli, T., Cassotti, P., Varvara, R.: Diacr-ita @ evalita2020: Overview of the evalita2020 diachronic lexical semantics (diacr-ita) task. EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020 (2020) Zamora-Reina et al. [2022] Zamora-Reina, F.D., Bravo-Marquez, F., Schlechtweg, D.: LSCDiscovery: A shared task on semantic change discovery and detection in Spanish. In: Tahmasebi, N., Montariol, S., Kutuzov, A., Hengchen, S., Dubossarsky, H., Borin, L. (eds.) Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pp. 149–164. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.lchange-1.16 . https://aclanthology.org/2022.lchange-1.16 Marra et al. [2022] Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zamora-Reina, F.D., Bravo-Marquez, F., Schlechtweg, D.: LSCDiscovery: A shared task on semantic change discovery and detection in Spanish. In: Tahmasebi, N., Montariol, S., Kutuzov, A., Hengchen, S., Dubossarsky, H., Borin, L. (eds.) Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pp. 149–164. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.lchange-1.16 . https://aclanthology.org/2022.lchange-1.16 Marra et al. [2022] Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  4. Schlechtweg, D., McGillivray, B., Hengchen, S., Dubossarsky, H., Tahmasebi, N.: SemEval-2020 task 1: Unsupervised lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 1–23. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.1 Kutuzov et al. [2021] Kutuzov, A., Pivovarova, L., et al.: RuShiftEval: a shared task on semantic shift detection for russian. In: Computational Linguistics and Intellectual Technologies: Papers from the Annual Conference Dialogue. (2021). Redkollegija sbornika Basile et al. [2020] Basile, P., Caputo, A., Caselli, T., Cassotti, P., Varvara, R.: Diacr-ita @ evalita2020: Overview of the evalita2020 diachronic lexical semantics (diacr-ita) task. EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020 (2020) Zamora-Reina et al. [2022] Zamora-Reina, F.D., Bravo-Marquez, F., Schlechtweg, D.: LSCDiscovery: A shared task on semantic change discovery and detection in Spanish. In: Tahmasebi, N., Montariol, S., Kutuzov, A., Hengchen, S., Dubossarsky, H., Borin, L. (eds.) Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pp. 149–164. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.lchange-1.16 . https://aclanthology.org/2022.lchange-1.16 Marra et al. [2022] Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Pivovarova, L., et al.: RuShiftEval: a shared task on semantic shift detection for russian. In: Computational Linguistics and Intellectual Technologies: Papers from the Annual Conference Dialogue. (2021). Redkollegija sbornika Basile et al. [2020] Basile, P., Caputo, A., Caselli, T., Cassotti, P., Varvara, R.: Diacr-ita @ evalita2020: Overview of the evalita2020 diachronic lexical semantics (diacr-ita) task. EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020 (2020) Zamora-Reina et al. [2022] Zamora-Reina, F.D., Bravo-Marquez, F., Schlechtweg, D.: LSCDiscovery: A shared task on semantic change discovery and detection in Spanish. In: Tahmasebi, N., Montariol, S., Kutuzov, A., Hengchen, S., Dubossarsky, H., Borin, L. (eds.) Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pp. 149–164. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.lchange-1.16 . https://aclanthology.org/2022.lchange-1.16 Marra et al. [2022] Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Basile, P., Caputo, A., Caselli, T., Cassotti, P., Varvara, R.: Diacr-ita @ evalita2020: Overview of the evalita2020 diachronic lexical semantics (diacr-ita) task. EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020 (2020) Zamora-Reina et al. [2022] Zamora-Reina, F.D., Bravo-Marquez, F., Schlechtweg, D.: LSCDiscovery: A shared task on semantic change discovery and detection in Spanish. In: Tahmasebi, N., Montariol, S., Kutuzov, A., Hengchen, S., Dubossarsky, H., Borin, L. (eds.) Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pp. 149–164. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.lchange-1.16 . https://aclanthology.org/2022.lchange-1.16 Marra et al. [2022] Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zamora-Reina, F.D., Bravo-Marquez, F., Schlechtweg, D.: LSCDiscovery: A shared task on semantic change discovery and detection in Spanish. In: Tahmasebi, N., Montariol, S., Kutuzov, A., Hengchen, S., Dubossarsky, H., Borin, L. (eds.) Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pp. 149–164. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.lchange-1.16 . https://aclanthology.org/2022.lchange-1.16 Marra et al. [2022] Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  5. Kutuzov, A., Pivovarova, L., et al.: RuShiftEval: a shared task on semantic shift detection for russian. In: Computational Linguistics and Intellectual Technologies: Papers from the Annual Conference Dialogue. (2021). Redkollegija sbornika Basile et al. [2020] Basile, P., Caputo, A., Caselli, T., Cassotti, P., Varvara, R.: Diacr-ita @ evalita2020: Overview of the evalita2020 diachronic lexical semantics (diacr-ita) task. EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020 (2020) Zamora-Reina et al. [2022] Zamora-Reina, F.D., Bravo-Marquez, F., Schlechtweg, D.: LSCDiscovery: A shared task on semantic change discovery and detection in Spanish. In: Tahmasebi, N., Montariol, S., Kutuzov, A., Hengchen, S., Dubossarsky, H., Borin, L. (eds.) Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pp. 149–164. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.lchange-1.16 . https://aclanthology.org/2022.lchange-1.16 Marra et al. [2022] Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Basile, P., Caputo, A., Caselli, T., Cassotti, P., Varvara, R.: Diacr-ita @ evalita2020: Overview of the evalita2020 diachronic lexical semantics (diacr-ita) task. EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020 (2020) Zamora-Reina et al. [2022] Zamora-Reina, F.D., Bravo-Marquez, F., Schlechtweg, D.: LSCDiscovery: A shared task on semantic change discovery and detection in Spanish. In: Tahmasebi, N., Montariol, S., Kutuzov, A., Hengchen, S., Dubossarsky, H., Borin, L. (eds.) Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pp. 149–164. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.lchange-1.16 . https://aclanthology.org/2022.lchange-1.16 Marra et al. [2022] Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zamora-Reina, F.D., Bravo-Marquez, F., Schlechtweg, D.: LSCDiscovery: A shared task on semantic change discovery and detection in Spanish. In: Tahmasebi, N., Montariol, S., Kutuzov, A., Hengchen, S., Dubossarsky, H., Borin, L. (eds.) Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pp. 149–164. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.lchange-1.16 . https://aclanthology.org/2022.lchange-1.16 Marra et al. [2022] Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  6. Basile, P., Caputo, A., Caselli, T., Cassotti, P., Varvara, R.: Diacr-ita @ evalita2020: Overview of the evalita2020 diachronic lexical semantics (diacr-ita) task. EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020 (2020) Zamora-Reina et al. [2022] Zamora-Reina, F.D., Bravo-Marquez, F., Schlechtweg, D.: LSCDiscovery: A shared task on semantic change discovery and detection in Spanish. In: Tahmasebi, N., Montariol, S., Kutuzov, A., Hengchen, S., Dubossarsky, H., Borin, L. (eds.) Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pp. 149–164. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.lchange-1.16 . https://aclanthology.org/2022.lchange-1.16 Marra et al. [2022] Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zamora-Reina, F.D., Bravo-Marquez, F., Schlechtweg, D.: LSCDiscovery: A shared task on semantic change discovery and detection in Spanish. In: Tahmasebi, N., Montariol, S., Kutuzov, A., Hengchen, S., Dubossarsky, H., Borin, L. (eds.) Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pp. 149–164. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.lchange-1.16 . https://aclanthology.org/2022.lchange-1.16 Marra et al. [2022] Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  7. Zamora-Reina, F.D., Bravo-Marquez, F., Schlechtweg, D.: LSCDiscovery: A shared task on semantic change discovery and detection in Spanish. In: Tahmasebi, N., Montariol, S., Kutuzov, A., Hengchen, S., Dubossarsky, H., Borin, L. (eds.) Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pp. 149–164. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.lchange-1.16 . https://aclanthology.org/2022.lchange-1.16 Marra et al. [2022] Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  8. Marra, E., Lösch, A., Racioppa, S., Mazo, H., Giagkou, M., et al.: Sustainable Language Data Sharing to Support Language Equality in Multilingual Europe - Why Language Data Matters: ELRC White Paper, 3rd edn. ELRC Consortium, Germany (2022) Krek et al. [2020] Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  9. Krek, S., Holdt, Š.A., Erjavec, T., Čibej, J., Repar, A., Gantar, P., Ljubešić, N., Kosem, I., Dobrovoljc, K.: Gigafida 2.0: the reference corpus of written standard slovene. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 3340–3345 (2020) Tahmasebi et al. [2021] Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  10. Tahmasebi, N., Borin, L., Jatowt, A., Xu, Y., Hengchen, S. (eds.): Computational Approaches to Semantic Change. Language Variation, vol. 6. Language Science Press, Berlin (2021). https://doi.org/10.5281/zenodo.5040241 Kutuzov et al. [2017] Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  11. Kutuzov, A., Velldal, E., Øvrelid, L.: Tracing armed conflicts with diachronic word embedding models. In: Proceedings of the Events and Stories in the News Workshop, pp. 31–36. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/W17-2705 . https://www.aclweb.org/anthology/W17-2705 Azarbonyad et al. [2017] Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  12. Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., Kamps, J.: Words are malleable: Computing semantic shifts in political and media discourse. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1509–1518 (2017) Martinc et al. [2021] Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  13. Martinc, M., Perger, N., Pelicon, A., Ulčar, M., Vezovnik, A., Pollak, S.: EMBEDDIA hackathon report: Automatic sentiment and viewpoint analysis of slovenian news corpus on the topic of lgbtiq+. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 121–126 (2021) Montariol et al. [2021] Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  14. Montariol, S., Martinc, M., Pivovarova, L., et al.: Scalable and interpretable semantic change detection. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies (2021). The Association for Computational Linguistics Stewart et al. [2017] Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  15. Stewart, I., Arendt, D., Bell, E., Volkova, S.: Measuring, predicting and visualizing short-term change in word representation and usage in VKontakte social network. In: Eleventh International AAAI Conference on Web and Social Media (2017) Gulordava and Baroni [2011] Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  16. Gulordava, K., Baroni, M.: A distributional similarity approach to the detection of semantic change in the Google Books ngram corpus. In: Pado, S., Peirsman, Y. (eds.) Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, pp. 67–71. Association for Computational Linguistics, Edinburgh, UK (2011) Erk et al. [2013] Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  17. Erk, K., McCarthy, D., Gaylord, N.: Measuring word meaning in context. Computational Linguistics 39(3), 511–554 (2013) Schlechtweg et al. [2018] Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  18. Schlechtweg, D., Walde, S., Eckmann, S.: Diachronic usage relatedness (DURel): A framework for the annotation of lexical semantic change. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 169–174. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2027 . https://www.aclweb.org/anthology/N18-2027 Kutuzov and Pivovarova [2021] Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  19. Kutuzov, A., Pivovarova, L.: Three-part diachronic semantic change dataset for Russian. In: Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021, pp. 7–13. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.lchange-1.2 . https://aclanthology.org/2021.lchange-1.2 Rodina and Kutuzov [2020] Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  20. Rodina, J., Kutuzov, A.: RuSemShift: a dataset of historical lexical semantic change in Russian. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1037–1047. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.90 . https://aclanthology.org/2020.coling-main.90 Martinc et al. [2022] Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  21. Martinc, M., Dobrovoljc, K., Pollak, S.: Semantic change detection datasets for Slovenian 1.0. Slovenian language resource repository CLARIN.SI (2022). http://hdl.handle.net/11356/1651 Juola [2003] Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  22. Juola, P.: The time course of language change. Computers and the Humanities 37(1), 77–96 (2003) Hilpert and Gries [2008] Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  23. Hilpert, M., Gries, S.T.: Assessing frequency changes in multistage diachronic corpora: Applications for historical corpus linguistics and the study of language acquisition. Literary and Linguistic Computing 24(4), 385–401 (2008) Mikolov et al. [2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  24. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems 26 (2013) Kutuzov et al. [2018] Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  25. Kutuzov, A., Øvrelid, L., Szymanski, T., Velldal, E.: Diachronic word embeddings and semantic shifts: a survey. In: Bender, E.M., Derczynski, L., Isabelle, P. (eds.) Proceedings of the 27th International Conference on Computational Linguistics, pp. 1384–1397. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018). https://aclanthology.org/C18-1117 Tang [2018] Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  26. Tang, X.: A state-of-the-art of semantic change computation. Natural Language Engineering 24(5), 649–676 (2018) Kim et al. [2014] Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  27. Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, pp. 61–65 (2014). https://doi.org/10.3115/v1/W14-2517 . http://aclweb.org/anthology/W14-2517 Hamilton et al. [2016a] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  28. Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pp. 1489–1501 (2016). https://doi.org/10.18653/v1/P16-1141 . http://aclweb.org/anthology/P16-1141 Hamilton et al. [2016b] Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  29. Hamilton, W.L., Leskovec, J., Jurafsky, D.: Cultural shift or linguistic drift? comparing two computational measures of semantic change. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2116–2121. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1229 . https://www.aclweb.org/anthology/D16-1229 Yin et al. [2018] Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  30. Yin, Z., Sachidananda, V., Prabhakar, B.: The global anchor method for quantifying linguistic shifts and domain adaptation. In: Advances in Neural Information Processing Systems, pp. 9412–9423 (2018) Gonen et al. [2020] Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  31. Gonen, H., Jawahar, G., Seddah, D., Goldberg, Y.: Simple, interpretable and stable method for detecting words with usage change across corpora. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 538–555. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.51 Frermann and Lapata [2016] Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  32. Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. Transactions of the Association for Computational Linguistics 4, 31–45 (2016) https://doi.org/10.1162/tacl_a_00081 Devlin et al. [2019] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  33. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423 . https://www.aclweb.org/anthology/N19-1423 Martinc et al. [2020] Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  34. Martinc, M., Kralj Novak, P., Pollak, S.: Leveraging contextual embeddings for detecting diachronic semantic shift. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4811–4819. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.592 Kutuzov and Giulianelli [2020] Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  35. Kutuzov, A., Giulianelli, M.: UiO-UvA at SemEval-2020 task 1: Contextualised embeddings for lexical semantic change detection. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 126–134. International Committee for Computational Linguistics, Barcelona (online) (2020). https://www.aclweb.org/anthology/2020.semeval-1.14 Giulianelli et al. [2020] Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  36. Giulianelli, M., Del Tredici, M., Fernández, R.: Analysing lexical semantic change with contextualised word representations. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3960–3973. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.acl-main.365 Martinc et al. [2020] Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  37. Martinc, M., Montariol, S., Zosa, E., Pivovarova, L.: Capturing evolution in word usage: Just add more clusters? In: Companion Proceedings of the Web Conference 2020. WWW ’20, pp. 343–349. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3366424.3382186 . https://doi.org/10.1145/3366424.3382186 Lin [1991] Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  38. Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information theory 37(1), 145–151 (1991) Solomon [2018] Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  39. Solomon, J.: Optimal transport on discrete domains (2018) Zhou et al. [2023] Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  40. Zhou, W., Tahmasebi, N., Dubossarsky, H.: The finer they get: Combining fine-tuned models for better semantic change detection. In: Alumäe, T., Fishel, M. (eds.) Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 518–528. University of Tartu Library, Tórshavn, Faroe Islands (2023). https://aclanthology.org/2023.nodalida-1.52 Pfeiffer et al. [2020] Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  41. Pfeiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I.: Adapterhub: A framework for adapting transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54. Association for Computational Linguistics, Online (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.7 Card [2023] Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  42. Card, D.: Substitution-based semantic change detection using contextual embeddings. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 590–602. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-short.52 . https://aclanthology.org/2023.acl-short.52 Monge [1781] Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  43. Monge, G.: Mémoire sur la Théorie des Déblais Et des remblais. De l’Imprimerie Royale, Paris, France (1781) Li et al. [2020] Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  44. Li, J., Li, C., Wang, G., Fu, H., Lin, Y., Chen, L., Zhang, Y., Tao, C., Zhang, R., Wang, W., Shen, D., Yang, Q., Carin, L.: Improving text generation with student-forcing optimal transport. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 9144–9156. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.735 . https://aclanthology.org/2020.emnlp-main.735 Swanson et al. [2020] Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  45. Swanson, K., Yu, L., Lei, T.: Rationalizing text matching: Learning sparse alignments via optimal transport. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5609–5626. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.496 . https://aclanthology.org/2020.acl-main.496 Xu et al. [2021] Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  46. Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 7361–7373. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.acl-long.571 . https://aclanthology.org/2021.acl-long.571 Kusner et al. [2015] Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  47. Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 957–966. PMLR, Lille, France (2015). https://proceedings.mlr.press/v37/kusnerb15.html Zhao et al. [2019] Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  48. Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C.M., Eger, S.: MoverScore: Text generation evaluating with contextualized embeddings and earth mover distance. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 563–578. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1053 . https://aclanthology.org/D19-1053 Lee et al. [2022] Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  49. Lee, S., Lee, D., Jang, S., Yu, H.: Toward interpretable semantic textual similarity via optimal transport-based contrastive sentence learning. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5969–5979. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-long.412 . https://aclanthology.org/2022.acl-long.412 Pollak et al. [2019] Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  50. Pollak, S., Gantar, P., Arhar Holdt, Š.: What’s New on the Internetz? Extraction and Lexical Categorisation of Collocations in Computer-Mediated Slovene. International Journal of Lexicography 32(2), 184–206 (2019) https://doi.org/10.1093/ijl/ecy026 Fišer and Ljubešić [2019] Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  51. Fišer, D., Ljubešić, N.: Distributional modelling for semantic shift detection. International journal of lexicography 32(2), 163–183 (2019) Gantar et al. [2018] Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  52. Gantar, P., Holdt, Š.A., Pollak, S.: Leksikalne novosti v besedilih računalniško posredovane komunikacije. Slavisticna Revija 66(4), 459–472 (2018) Schlechtweg et al. [2019] Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  53. Schlechtweg, D., Hätty, A., Del Tredici, M., Walde, S.: A wind of change: Detecting and evaluating lexical semantic change across times and domains. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 732–746. Association for Computational Linguistics, Florence, Italy (2019). https://www.aclweb.org/anthology/P19-1072 Hanks [2013] Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  54. Hanks, P.: Lexical Analysis: Norms and Exploitations. The MIT Press, Cambridge, MA, USA (2013) Reimers and Gurevych [2019] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  55. Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. ArXiv abs/1908.10084 (2019) Zhang et al. [2020] Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  56. Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: Evaluating text generation with BERT. ArXiv abs/1904.09675 (2020) Liu et al. [2019] Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  57. Liu, N.F., Gardner, M., Belinkov, Y., Peters, M.E., Smith, N.A.: Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 1073–1094. Association for Computational Linguistics, Minneapolis, Minnesota (2019) Coenen et al. [2019] Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  58. Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., Wattenberg, M.: Visualizing and measuring the geometry of BERT. Curran Associates Inc., Red Hook, NY, USA (2019) Turton et al. [2021] Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  59. Turton, J., Smith, R.E., Vinson, D.: Deriving contextualised semantic features from BERT (and other transformer model) embeddings. In: Rogers, A., Calixto, I., Vulić, I., Saphra, N., Kassner, N., Camburu, O.-M., Bansal, T., Shwartz, V. (eds.) Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 248–262. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.repl4nlp-1.26 . https://aclanthology.org/2021.repl4nlp-1.26 Ulčar and Robnik-Šikonja [2021] Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  60. Ulčar, M., Robnik-Šikonja, M.: SloBERTa: Slovene monolingual large pretrained masked language model (2021) Flamary et al. [2021] Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  61. Flamary, R., Courty, N., Gramfort, A., Alaya, M.Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N.T.H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D.J., Tavenard, R., Tong, A., Vayer, T.: Pot: Python optimal transport. Journal of Machine Learning Research 22(78), 1–8 (2021) Cuturi [2013] Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013) Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
  62. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, pp. 2292–2300. Curran Associates Inc., Red Hook, NY, USA (2013)
Citations (1)

Summary

We haven't generated a summary for this paper yet.